Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions

نویسندگان

چکیده

We derive sharp quantitative bounds for eigenvalues of biharmonic operators perturbed by complex-valued potentials in dimensions one, two and three.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Bound on Eigenvalues of Schrödinger Operators on the Halfline with Complex-valued Potentials

We derive a sharp bound on the location of non-positive eigenvalues of Schrödinger operators on the halfline with complex-valued potentials.

متن کامل

Eigenvalues of Schrödinger Operators with Complex Surface Potentials

We consider Schrödinger operators in R with complex potentials supported on a hyperplane and show that all eigenvalues lie in a disk in the complex plane with radius bounded in terms of the L norm of the potential with d − 1 < p ≤ d. We also prove bounds on sums of powers of eigenvalues. Introduction and main results. Recently there has been great interest in bounds on eigenvalues of Schrödinge...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Iii

We discuss the eigenvalues Ej of Schrödinger operators −∆ + V in L(R) with complex potentials V ∈ L, p < ∞. We show that (A) ReEj → ∞ implies ImEj → 0, and (B) ReEj → E ∈ [0,∞) implies (ImEj) ∈ l for some q depending on p. We prove quantitative versions of (A) and (B) in terms of the L-norm of V .

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials

We show that the absolute values of non-positive eigenvalues of Schrödinger operators with complex potentials can be bounded in terms of Lp-norms of the potential. This extends an inequality of Abramov, Aslanyan, and Davies to higher dimensions and proves a conjecture by Laptev and Safronov. Our main ingredient are the uniform Sobolev inequalities of Kenig, Ruiz, and Sogge. Introduction and mai...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2021

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.202000196